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Background / Context:  
Description of prior research and its intellectual context. 
 
 In the ideal, a randomized control trial (RCT) provides internally valid treatment effect 
estimates and associated estimates of uncertainty, without relying on strong assumptions about 
causal mechanisms or on distributional models. This capacity for relatively model-free inference 
is what leads some to describe RCTs as a "gold standard" for causal inference. In practice, 
however, field trials on human subjects rarely meet the ideal. Missing outcome data appear 
commonly in social experiments, due to participant drop-out or survey non-response. In addition 
to reducing precision, missing data creates the possibility that treatment effect estimates may be 
biased (Orr, 1999). Bias arises when the process leading to missing data is non-ignorable, as 
when the probability that a participant drops out of an experiment positively correlated with the 
outcome measure of interest. 
 This paper examines three estimands that arise from different assumptions about the 
missing data process. The first assumption is that any missing outcome data are missing at 
random (Rubin, 1976; Little & Rubin, 2002). The predominance of analytic methods for 
handling missing data rely on this assumption. Missingness at random (MAR) implies that the 
population average treatment effect is point-identified, and is thus the appropriate estimand for 
inference. 
 The second alternative assumption is often so weak as to be nearly incontrovertible: that 
all outcome data are bounded by a known interval. This assumption leads to a worst-case partial 
identification region (PIR), a logical outer bound for a parameter (Manski, 2007). The strength of 
the worst-case bounds approach is that it reveals the extent to which more precise inference is 
based on assumptions whose credibility must be assessed by other means. Worst-case bounds 
have been developed for analysis of treatment effects with observational data (Manski, 1990), 
survey results with nonresponse (Horowitz and Manski, 1998), randomized experiments with 
missing data (Horowitz and Manski, 2000; Scharfstein et al., 2004, Shadish et al., 1998), and 
randomized experiments with non-compliance (Balke and Pearl, 1997). Tetenov (2008) studies 
the trade-off between statistical precision and partial identification in a simple model, very 
similar to that described in the paper. In addition to the width of confidence intervals, he also 
considers alternative loss functions and alternative decision theory models. 
 The third alternative assumption involves defining a less conservative PIR, using bounds 
for the unobservable mean outcomes relative to the observable mean outcomes. This PIR takes 
the form of an interval with fixed width W, centered on the observable mean outcomes.  The 
width may be chosen directly on the basis of conservative benchmarks, or by relating it to a non-
ignorable missing data model such as the pattern-mixture model described by Little (1994). This 
assumption is consonant with the sensitivity-analysis approach to non-randomly missing data 
mechanisms, as described by Allison (2001); in what follows, it is therefore referenced as the 
sensitivity lower bound. 
 
Purpose / Objective / Research Question / Focus of Study: 
Description of the focus of the research. 
 
 Recent guidance on the treatment of missing data in experiments advocates the use of 
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sensitivity analysis and worst-case bounds analysis for addressing non-ignorable missing data 
mechanisms; moreover, plans for the analysis of missing data should be specified prior to data 
collection (Puma et al., 2009). While these authors recommend only that missing data should be 
anticipated in the analysis plan of an experiment, it is logically consistent that anticipation of 
missing data should be incorporated into another important step in the planning process for an 
RCT: power analysis.  
 The paper develops power analysis formulas for the worst-case lower bound and 
sensitivity lower bound and compares power for these estimands to the power to detect treatment 
effects assuming MAR. The methods described provide a valid and principled approach for 
researchers to study the consequences of anticipated levels of missing data for planned 
experimental designs. The paper also illustrates how these methods can be used for cost-benefit 
analysis, weighing measurement approaches that are less expensive but yield lower response 
rates against approaches that are more expensive but yield higher response rates.  
 
Significance / Novelty of study: 
Description of what is missing in previous work and the contribution the study makes. 
 
 Conventional power analysis formulas and programs assume that outcomes are measured 
on all units (Schochet, 2008; Spybrook et al., 2009). To account for missing data, researchers 
typically use power analysis to determine the number of complete cases necessary to achieve a 
given level of precision, and then inflate this number according to an anticipated level of missing 
data, so that the total sample size will yield adequate complete cases. This ad hoc approach fails 
to emphasize the assumptions necessary for its validity. The paper discusses these assumptions in 
detail.  
 Several authors have proposed methods for power analysis that use a principled approach 
to anticipate non-response. In particular, Hedeker et al.(1999), Jung and Ahn (2003, 2005),  and 
Overall et al. (1998) study longitudinal designs, while Muthen and Muthen (2002) and Davey 
and Savla (2009) study structural equation models. However, all of these approaches assume that 
data are missing completely at random. I know of no literature that examines power analysis 
methods under alternative assumptions about the missing data process, as done in this paper. 
 
Statistical, Measurement, or Econometric Model:  
Description of the proposed new methods or novel applications of existing methods. 
 
 The paper introduces a population model that resembles the principal stratification 
framework of Frangakis and Rubin (2002), a randomized block sampling model, and some 
additional notation, all omitted here for brevity. The model is limited to an experiment that 
compares two treatments on a continuous outcome variable, with balanced, equally sized blocks. 
Matched pair designs are also excluded by assuming that each block will have at least two units 
in each treatment group.  
 I make use of three parametric assumptions in order to derive power analysis formulas: 
that the observed outcomes are normally distributed, with equal variance within blocks and 
treatment groups (A1); that the response rate in each block of each treatment group is identical 
(A2); and that the observed response rates are exactly equal to the population response rate (A3). 
Note that none of these assumptions relate to the mechanism by which outcome data are missing. 
Particular missingness mechanisms relate to the bivariate population distributions of the outcome 
and the missingness indicator, whereas A2 refers only to the marginal distribution of the 
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missingness indicator. 
 The paper establishes power analysis formulas using all three of the above assumptions, 
and then consider the sensitivity of the results to removal of A3 and A2 in turn. Results are 
presented for three different estimands, each of which is appropriate under a different assumption 
about the unobserved outcome data.  
 A typical missing data adjustment to power analysis assumes implicitly or explicitly that 
outcomes will be missing at random. Either the mean independence assumption discussed in 
Heckman et al. (1998) or the yet stronger missing at random (MAR) assumption, described by 
Rubin (1976), is sufficient. Either assumption point-identifies the treatment effect and implies 
that the observed difference in outcomes is an unbiased estimate for the average treatment effect. 
The paper gives a formula for power analysis of the observed outcome difference, under A1-A3. 
Using this formula is equivalent to conducting a conventional power analysis assuming zero non-
response, then increasing the required sample size by the inverse of the response rate to account 
for non-response (what in the introduction I describe as the ad hoc approach).  For small sample 
sizes in each block, it is likely that the response rate times the sample size will not be an integer, 
making assumption A3 less credible.  
 Without assuming that the observed non-response rate will be exactly equal to the 
population proportion of non-respondents, the above approach is only approximate. Once the 
data are collected, the analyst typically conditions on the observed response rates in conducting 
the hypothesis test. Thus, if A3 is removed, the exact power of the test can in principle be 
evaluated by taking its expectation over the sampling distribution of the response rates. The 
paper addresses several complications in this approach studies the degree to which results differs 
from those assuming A3. Similarly, results are presented and compared when A2 is removed 
also.  
 Next, the paper examines power analysis for a worst-case lower bound, an appropriate 
estimand under the extremely weak assumption that the outcome variable is bounded in a known 
interval (Manski, 2007). Powering a study to estimate the worst-case lower bound puts 
constraints on the maximum amount of missing outcome data. If the hypothesized observed 
treatment difference is small, the expected amount of missing data must be quite small in order 
for the experiment to ever establish that the true effect is bounded away from zero. Under A1-
A3, power for the worst-case lower bound can be expressed in a closed form, given in the paper. 
If assumption A3 is removed, power depends on how the missing data process is modeled across 
blocks and treatment groups, in addition to how missing blocks are modeled. The paper 
illustrates that tests which condition on observed response rates no longer have nominal type I 
error rates, and gives delta-method approximations that have approximately correct type I error. 
The power of this estimator is examined through simulation.  
 Finally, the paper examines power for the sensitivity lower-bound. In certain situations, 
the analyst might consider a bound on the mean missing outcome, relative to the observable 
mean outcome. Suppose that, within each block, the mean missing outcome is within a range of 
W from the observed mean. This assumption partially identifies the average treatment effect, 
leading to a lower bound that depends on the observable treatment difference, the population 
non-response rate, and the width W. Just as for the worst-case lower bound, powering a study to 
estimate the sensitivity lower bound constrains the maximum amount of missing data. Suppose 
that an investigator posits an observed treatment difference of 0.25 standard deviations and a W 
of 0.5 standard deviations. Then an expected response rates of less than 75% implies that the 
lower bound is less than zero, so no amount of data will provide sufficient power to test the 
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hypothesis of interest. Analysis of the sensitivity lower bound largely parallels that for the worst-
case bound discussed above: the paper gives power analysis formulas for this lower bound under 
A1-A3, as well as when A3 and A2 are removed in turn. 
 
Usefulness / Applicability of Method:  
Demonstration of the usefulness of the proposed methods using hypothetical or real data.  
 
 Power analysis methods that anticipate non-response are useful both to researchers 
designing field experiments and to granting agencies or funders who must assess the utility of 
proposed designs. In the design phase, these methods can be incorporated into a cost-benefit 
framework. The paper considers a formal model of alternative measurement designs to estimate 
the sensitivity lower-bound described above. It is assumed that the probability of response 
depends on the cost of outcome measurement: the more spent per participant, the higher the 
probability of response. The optimal sample size per block is derived for fixed W. A hypothetical 
example is given to illustrate the use of this analysis. 
 Granting agencies and funders can benefit from the power analysis methods described 
here because they lead to greater and explicit consideration of assumptions. These methods 
emphasize the need for reasonable (and even empirically grounded) estimates of likely response 
rates and levels of potential bias. 
 
Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 
 
 The appropriateness of the methods described in this paper depend on the context of the 
experiment being planned, and in particular on treatment under study and the method used to 
measure the outcome. For treatments such as dropout prevention programs that measure impacts 
after a considerable delay (e.g., Dynarski et al., 1998), non-random non-response may be of great 
concern, and should be anticipated in the planning stages using conservative assumptions. In 
other situations, the extreme conservatism of worst-case bounds may not be justified, but it may 
be prudent to use sensitivity analysis with a small value for W. Even in experiments where it is 
plausible that non-response is ignorably random, the assumption should be made explicit and 
justified during the planning stage.  
 Thus far I have considered only a simple randomized-block experimental design with 
fixed effects and normally distributed outcomes. Extensions to (block) randomized designs with 
binary outcomes are straightforward. When the outcome measure is binary, other estimands such 
as odds ratios are also relevant, as are other assumptions; for instance, Imai (2009) considers an 
exclusion restriction other than MAR that point-identifies the average treatment effect. The use 
of PIRs is less straightforward in other common experimental designs, including random effect 
randomized blocks or cluster-randomized designs. Application of PIRs to such designs will be 
explored in further work. 
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